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We present an update on our calculation of the short-distance D0-meson mixing hadronic matrix
elements. The analysis is performed on the MILC collaboration’s N f = 2+ 1 asqtad configura-
tions. We use asqtad light valence quarks and the Sheikoleslami-Wohlert action with the Fer-
milab interpretation for the valence charm quark. SU(3), partially quenched, rooted, staggered
heavy-meson chiral perturbation theory is used to extrapolate to the chiral-continuum limit. Sys-
tematic errors arising from the chiral-continuum extrapolation, heavy-quark discretization, and
quark-mass uncertainties are folded into the statistical errors from the chiral-continuum fits with
methods of Bayesian inference. A preliminary error budget for all five operators is presented.
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1. Introduction

D0-meson mixing is currently the least well understood meson mixing process. Experimental
efforts underway or planned at LHCb, BES III, and Belle II, should improve our understanding and
ignite excitement for the future of charm physics. In the Standard Model (SM), the short-distance
contributions to D0-meson mixing are GIM suppressed by m2

s −m2
d and Cabbibo suppressed by

|VubV ∗cb|2; therefore D0-meson mixing is expected to receive significant contributions from the
long-distance processes in the Standard Model. However, it is also possible for D0-meson mix-
ing to receive enhancements from short-distance new physics (NP) contributions. Therefore, in
conjunction with next generation flavor factories, knowledge of the five short-distance hadronic
matrix elements will allow for model-discrimination between NP theories [1]. The short-distance
matrix elements are described by a basis of five 4-quark operators that are invariant under Lorentz,
Fierz, charge conjugation, parity inversion, and time reversal transformations and may be expressed
as the following:

O1 = c̄α
γ

µLuα c̄β
γ

µLuβ , O2 = c̄αLuα c̄β Luβ , O3 = c̄αLuβ c̄β Luα , (1.1)

O4 = c̄αLuα c̄β Ruβ , O5 = c̄αLuβ c̄β Ruα , (1.2)

where L and R are the left- and right-handed projection operators, while c and u denote the charm
and up quarks respectively. The operators in Eq. (1.2) couple to right-handed quarks and, therefore,
appear only in NP scenarios.

2. Lattice setup and correlator analysis

The correlators pertinent to this project are constructed on a large subset of the MILC gauge
configurations [2] with 2+1 asqtad staggered sea quarks. A complete list of ensembles used for this
project is given in Ref. [3]. The light valence quarks are also generated with the asqtad action, with
masses ranging from ms to ms/20. We have a large range of valence masses, hence we use partially
quenched chiral perturbation theory to extrapolate to physical up- and down-quark masses. For
the heavy charm quark, we use the Sheikoleslami-Wohlert action with the Fermilab interpretation,
which ensures that the couplings in the theory are smoothly bounded for amq /�1, as well as in
the limit amq → 0, resulting in well controlled errors. The heavy-quark Lagrangian is tree-level
improved and the lattice operators corresponding to theOi use rotated heavy-quark fields, resulting
in errors starting at O(αsa,a2).

Results of the correlator analysis have been presented in Ref. [3] and are complete for all five
4-quark operators. Under renormalization, the sets of operators given in Eq. (1.1) and (1.2) mix
among each other. Thus,

〈
D0|Oi|D̄0〉MS−NDR

(mc) =
5

∑
j=1

[δi j +αs(q∗)ζ MS−NDR
i j (amc)+O(α2

s (q
∗))]
〈
D0|O j|D̄0〉lat

. (2.1)

The ζ
MS−NDR
i j s are matching coefficients relating one-loop lattice and continuum renormalizations
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evaluated at the charm quark mass mc, and αs(q∗) is the strong coupling discussed in Ref. [5]. The
one-loop continuum calculations require choosing an additional set of evanescent operators during
intermediate steps of dimensional regularization. We report results using the BBGLN [6] scheme.
Once the analysis has been finalized, results in the BJU [7] scheme will also be reported. The
errors from renormalization and matching start at O(α2

s ), as suggested by Eq. (2.1). For brevity,

we will use the short-hand 〈Oi〉 ≡
〈
D0|Oi|D̄0

〉MS−NDR
(mc) when referring the renormalized matrix

element below.

The charm quark mass is set by tuning the Ds-meson mass to its physical value [8, 9]. Correc-
tions to the slight mistunings are implemented by linearly extrapolating the matrix element to the
correct (tuned) charm mass mc,

〈Oi〉tune =〈Oi〉+σi∆(1/M2) , (2.2)

where σi is the slope of 〈Oi〉 with respect to the inverse kinetic mass 1/M2 and is obtained by
performing a correlated unconstrained fit on the a≈ 0.12 fm, ml/ms = 0.2 ensemble at two valence
mass points and two values of mc. The errors of the corrections to the heavy-quark mistuning are
determined by the precision of the linear fits performed to extract σi as well as the determination
of the tuned mc, outlined in Refs. [8, 9].

3. Chiral-continuum extrapolation

To extrapolate to the chiral-continuum limit, we use SU(3), partially quenched, rooted, stag-
gered, heavy-meson chiral perturbation theory [12]. For reviews of heavy meson and staggered
chiral perturbation theory see: [11, 10]. The expression has the schematic form,

〈Oi〉= βi

(
1+
Wuc̄ +Wcū

2
+T (i)

u +
C(β j 6=i)

βi
T̃ (i)

u + analytic terms
)
+β

′
i

(
Q(i)

u +
D(β ′j 6=i)

β ′i
Q̃(i)

u

)
.

(3.1)
The β s and β ′s along with the coefficents in the analytic terms are the low energy constants (LECs)
of the theory and are determined from fits to the matrix element data. The functions C and D are
linear in β j 6=i for each 〈Oi〉, introducing mixing between the leading-order LECs within the sets
{〈O1〉 ,〈O2〉 ,〈O3〉} and {〈O4〉 ,〈O5〉}. The termsW , T andQ denote the chiral logarithms arising
from the wavefunction renormalization, tadpole, and sunset one-loop Feynman diagrams. Using
staggered light quarks and local (not point-split) operators introduces wrong-spin taste-mixing chi-
ral logarithms T̃ and Q̃, however these contributions do not introduce new LECs, as indicated by
the C and D functions in Eq. (3.1). From examining the correlator fits, we observe the β s to be of
order 1. The β s are introduced into the fit via priors and are loosely constrained with a prior width
of 10, such that the data determine their values.

Analytic terms in the chiral fit capture the effects of explicit NLO SU(3) flavor symmetry
breaking and SU(4) taste breaking as well as NNLO contributions. The dependence of the va-
lence mass, sea mass and taste breaking effects are parameterized by dimensionless “natural χPT”
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parameters, which yield coefficients that are naturally of O(1) [13],

xu,l,s ≡
(r1B0)(r1/a)(2amu,l,s)

8π2 f 2
π r2

1
x∆̄ ≡

r2
1a2∆̄

8π2 f 2
π r2

1
(3.2)

where mu,l,s corresponds to the valence up, sea up/down and sea strange masses and ∆̄ is the average
taste splitting. The NLO and NNLO analytic terms are,

NLO analytic =c0xu + c1(2xl + xs)+ c2x∆̄ (3.3)

NNLO analytic =∑
j

d jFj(xnxm) (3.4)

where the NLO coefficients ci are loosely constrained while the NNLO coefficients d j are con-
strained to be O(1). The functions Fj(xnxm) represents the set of quadratic functions in xu,l,s,∆̄. Our
fits results are insensitive to the addition of terms beyond NNLO.

The largest 1/MD corrections from heavy-meson χPT arise from the spin splittings (e.g.,
MD∗ −MD) and flavor splittings (e.g., MDs −MD) and are accounted for in the chiral logarithms
presented in Eq. (3.1).

For LECs that cannot be determined by the data, priors are used to constrain the parame-
ters. The largest parametric uncertainty that enters the chiral-continuum extrapolation is the heavy-
meson coupling and is accounted for through the prior gD∗Dπ = 0.53±0.08 [14]. Other parameters
such as the hyperfine splitting ∆∗ is determined by experimental results [15] and are introduced as
priors to incorporate experimental uncertainties. Systematic errors arising from the free parameters
of the effective theory are all accounted for in the chiral fits.

Along with the chiral-continuum extrapolation, we fold in the O(αsa,a2) heavy-quark dis-
cretization errors arising from the Lagrangian and operator. We estimate the contributions arising
from perturbative matching between continuum QCD and lattice QCD through HQET [4, 16],

LQCD
.
=LHQET = ∑

k
Ccont

k (mc)Ok, (3.5)

Llat
.
=LHQET(m0a) = ∑

k
Clat

k (mc,m0a)Ok, (3.6)

from which it follows that the error from each term is

errork =
∣∣[Clat

k (mc,m0a)−Ccont
k (mc)

]
〈Ok〉

∣∣ . (3.7)

The O(aαs,a2) discretization effects are included as part of the chiral-continuum fit. The mismatch
functions are discussed in detail in Ref. [13]. Their coefficients introduced as priors with central
values of 0, and widths determined by power counting and are O(1).

4. Error budget

The stability of the chiral-continuum extrapolation is demonstrated in Fig. 1. The preferred fit
(blue boxes) is a simultaneous fit over the operators that mix in the χPT over four lattice spacings,
including O(aαs,a2) heavy-quark discretization corrections and NNLO analytic terms. The first
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Figure 1: Fit variations for the chiral-continuum extrapolation. The preferred fit is indicated by the blue
boxes, with 1σ error bands from that fit indicated by the horizontal red lines. The first group of fits explores
options for including heavy-quark discretization errors. The second group explores adding chiral analytic
terms. The last group explores parameter and data set changes.

group of four fits in Fig. 1 progressively introduces heavy-quark discretization terms to the fit. The
second group of three fits progressively includes more chiral analytic terms. In both cases, the
preferred fit lies in the region of stability. The largest changes in the central value occur when
introducing the O(αsa) heavy quark discretization errors, and NNLO analytic terms, showing that
truncation errors of the respective expansions are included as part of the preferred fit.

The third set of fits differ from the preferred fits as follows: changing fπ to fK , restoring heavy
quark flavor-spin symmetry, omitting the 0.12 fm ensembles, omitting larger (> 38MeV) light
valence quark masses, and performing fits individually for each operator. The fits are stable within
one standard deviation.

By incorporating the heavy-quark discretization errors into the chiral-continuum fit, the asso-
ciated relative error ranges from 2.3–2.9%. We estimate the renormalization error by setting the
α2

s two-loop coefficients to 1 and using an average value of α2
s across all four lattice spacing. This

suggests a systematic error of 6.5%. Based on previous D-meson decay constant analysis [13], we
expect the finite volume effects to be < 1%.
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〈O1〉 〈O2〉 〈O3〉 〈O4〉 〈O5〉

Statistical 3.2% 2.1% 3.3% 2.2% 3.9%
Chiral extrapolation 2.2% 2.1% 2.4% 2.1% 3.0%
(αsa,a2) HQ error 2.4% 2.4% 2.9% 2.3% 2.7%
HQ mass tuning 0.8% 1.1% 1.0% 1.2% 1.3%

Renormalization 6.5%
Finite volume < 1%

Total error 8.0% 7.7% 8.3% 7.7% 8.7%

Table 1: Preliminary error budget for D0-meson mixing hadronic matrix elements in the continuum and for
physical quark masses. Values are percent relative errors.

5. Conclusions and outlook

Our chiral-continuum analysis of the D0-meson hadronic matrix elements, including a com-
plete error budget, is near completion. Due to the large contribution of the renormalization error, a
partially nonperturbative approach to determining the renormalization coefficients is currently be-
ing investigated. The results of the matrix elements will also be combined with our decay constants
calculated separately [17, 18] and bag parameters will be reported.
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